Low Flow Relief

Options and Potential Outcomes for Building Trout Refuge Needed in Southwestern Colorado Mountain Streams

> Raymond Rose, Dolores River Anglers Prepared for Colorado Trout Unlimited, 2022

Introduction

- Mountain streams in the upper Dolores River basin,
- Draining approximately 500 sq mi in southwestern Colorado,
- Are having problems from low flow conditions,
- Which are occurring more frequently and with greater intensity
- Due to climate change.
- The second lowest flow in 71 years was experienced in 2018.
- A few small streams temporarily dewatered to dryness in 2019.
- Recurring low and very low flows can jeopardize the health and survival of resident trout populations.

The leading question

- High volumes of water <u>charge</u> through these streams, however, during snowmelt.
- Can some of that water be held onto?
- And made <u>available</u> for trout to have refuge during low flows.
- And, ideally, made proximate to distributed trout populations.
- That is, can consequential trout refuge be built at streams?

Thinking about it

- Thinking might go like this.
- What about large-ish containment that could hold lots of trout?
- A pond, for example, for refuge.
- Created by a dam in the channel that also extends onto adjacent flood plain for holding lots of water.
- A seemingly ready solution.
- But a pond (or two) would be accessible mostly to trout nearby during low and very low flow conditions, due to limits on movement.
- And would increase stream water evaporation.

Thinking, cont.

- What about smaller containment, also using dams,
- That's easier to install at more places, that is, more distribution.
- That keeps water in the stream channel,
- The dam width being the channel width,
- So water surface area and evaporation are not increased,
- Creating backup pools.
- It's potentially a lot of dams to install.
- And to try keeping sealed to maintain intended refuge volume.
- But it is an option for building trout refuge.

Thinking, cont.

- So, what avoids dam challenges.
- And increases refuge distribution for trout access, too.
- Some natural examples are apparent at mountain streams,
- Where the downstream sides of some instream structures,
- Have deep-ish pools,
- Created by the scouring action of high flows on the streambed,
- From water plunging over the structures.
- They're sometimes called <u>plunge pools</u>, a third refuge option.

Noted

- For contemplating these three refuge options.
- Two distinctive flow conditions are noted:
 - High
 - And not-high.
- <u>High</u> flows can dislodge things and can scour.
- That is, they can wash out dams,
- And they can scour out plunge pools.

Noted, cont.

- Not-high flows are:
 - Medium,
 - Low,
 - And very low.
- Low and very low flows are the problems.
- Low flows limit trout <u>habitat volume</u>.
- Very low flows limit also trout movement.

Fitting

- Try fitting, conceptually
- These three options,
- A pond, backup pools, and plunge pools,
- Into a small, mountain stream setting.
- And see where logic leads,
- In reasonable expectations,
- About effectiveness, access for trout, maintenance, and resilience.

First, a setting

- The upper Dolores River basin, which has 42 trout-bearing streams,
- Half of which are <u>small</u>.
- They are 6 mi or less in length and 6 sq mi or less in drainage area.
- Small streams have the least water to lose,
- Before flow conditions become a problem for resident trout.
- The three options will be contemplated for small streams in the upper Dolores basin,
- Which may lead to consideration also for larger streams, that is, the other half of the basin's inventory.

Next

- Some brief observations at small streams
- Are shown in photographs next,
- Which may help anticipate results from applying options.
- Also shown are water temperature
- And water quality information
- And a tool to sort streams by features, such as, length, drainage area, mean flows, maximum elevations, etc.

Beaver pond

- Estimated refuge volume, 1575 cf.
- From an estimated pond size of 30 ft wide, 35 ft long, and 1.5 ft deep.
- It was May flow conditions at a small stream (Ryman).

- Plunge pool volume, 96 cf.
- From wading in and measuring 6 ft wide, 8 ft long, and 2 ft deep.
- This was May flow at the small stream (Ryman).

- Plunge pool volume, 200 cf.
- From wading in and measuring 5 ft wide, 10 ft long, and 4 ft deep.
- Plunge pools along this small stream were 5-7 ft wide, 5-10 ft long, and 1-4 ft deep.
- It was May flow at this stream (Ryman).

- Developed below 2 fallen logs.
- Extending across a wider stream section.
- It was May flow at the small stream (Ryman).

- Formed below fallen logs
- This was May flow at a small stream (Wildcat).

- Formed below a fallen or placed log(s)
- At a large stream.
- Streambed material has filled behind the log structure.
- It was April flow at this large stream (Roaring Fork).

- Another view, downstream,
- With the structure apparently well secured,
- Due to the streambed fill that is directly upstream
- Causing flow to go over the structure, pressing it down, instead of broadsiding and dislodging it.

Fill

- Streambed fill has accumulated behind the placed log dam.
- The dam likely was installed for both up- and downstream refuge.
- Little upstream refuge remains, however, predictably.
- It was September flow at this small stream (Ryman).

Scoured

- No backup pool or plunge pool developed here.
- It is because scouring
- Removed contact of the placed log with the streambed.
- This was September flow at a large stream (Coal).

Fill

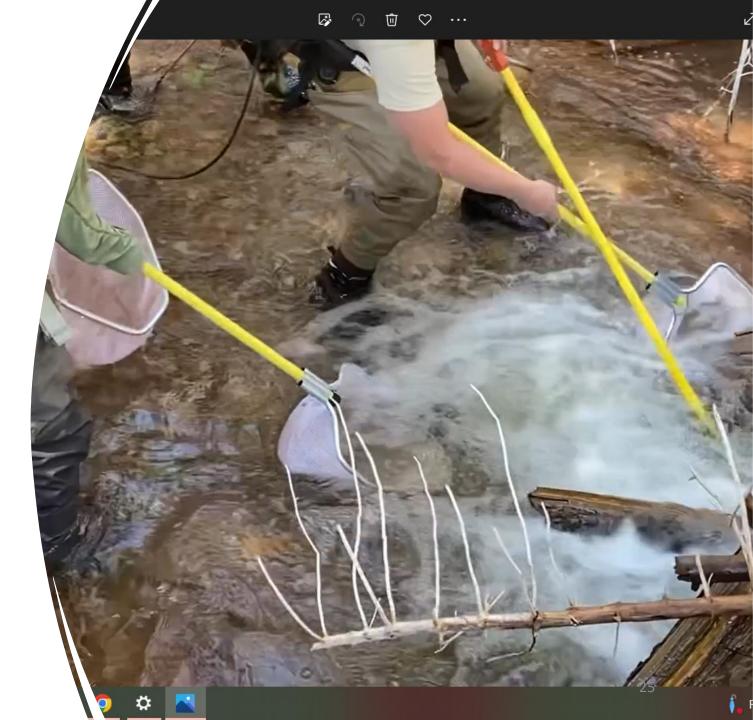
- Accumulated silt on the right bank is evident,
- 2-3 ft deep,
- Which was left behind
- After washout of a beaver dam.
- This was September flow at a large stream (Taylor).

Reminder

- It is a small-scale reminder
- That an improvised structure,
- In this case, a check dam
- For managing water,
- Can disrupt channel flow
- And become so damaged itself
- That it loses function,
- As at this roadside ditch.

Beaver dam

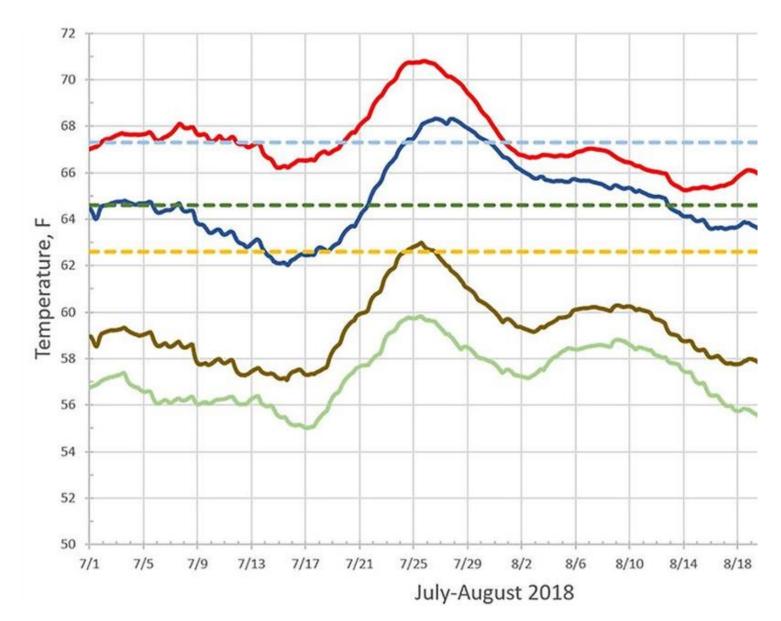
- Water level was below this dam top.
- Silt collected behind the dam.
- Estimated pond space to the top of the dam was 2025 cf.
- Water occupied perhaps a third of that pond space.
- It was September flow at the small stream (Ryman).


Leakage

- The beaver dam is at the bottom of this view.
- The dam leaks, which is normal,
- And flow continues downstream.
- But leakage limits the upstream refuge volume.
- This was September flow at the small stream (Ryman).

Assessment

- Electro-fishing technique was applied
- To determine trout presence
- In a plunge pool
- Directly below fallen logs
- At a small stream (Wildcat).


Cold enough

- Horizontal line is the CO chronic criterion.
- Irregular lines are stream temperatures.
- All streams were <u>cold</u> <u>enough</u>
- To be temperature-safe, warm-weather habitat.

Too warm

- Lower horizontal line is the CO chronic criterion.
- Irregular lines are water temperatures in the main stem
- At 7000, 7500, 8500, and 9000 ft, top to bottom.
- The main stem was <u>not</u> <u>cold enough</u> at 7000 and 7500 ft (the upper lines).

Good enough

- Water quality has been tested
- And found good enough
- Such that eight of the basin's streams
- Have been classified as CO Outstanding Waters.

Stream	્ય	unium usl	BSSIM PCH	pper, ugli,	ostnocil poer criteric	n.ugli 0.ugli.05t 0.ugli.05t	n pott	uell aneanese, ue Mar
Bear	0	0.75	0.70	9.4	0.10	2.7	3.7	1682
Coal	0	0.87	6.4	11	0.29	3.3	3.9	1793
East Fork	0	0.87	1.3	11	0.19	3.3	3.4	1798
Priest	0	0.60	1.0	13	0.10	4.2	6.0	1925
Slate	0	0.67	1.0	8.3	0.19	2.3	2.5	1604
Snow Spur	0	0.73	1.2	9.1	0.29	2.6	3.8	1661
Stoner, Lower	0	0.90	0.68	12	0.10	3.5	7.0	1822
West Fork, Burro	0	0.64	3.8	7.9	0.10	2.1	3.9	1570
Wildcat	0	0.97	0.60	13	0.04	3.9	6.6	1882

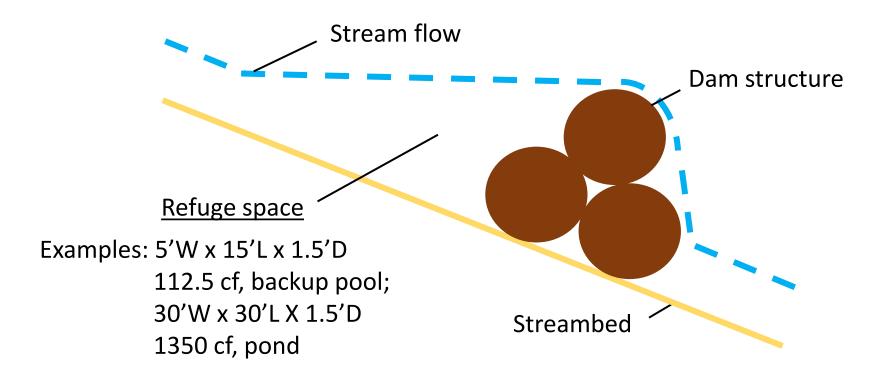
Sorting

- The upper Dolores basin streams
- Can be sorted for features,
- Such as, length, drainage area, maximum elevations,
- And <u>scored</u> for strength of combinations of features
- That might support stream and habitat resilience.

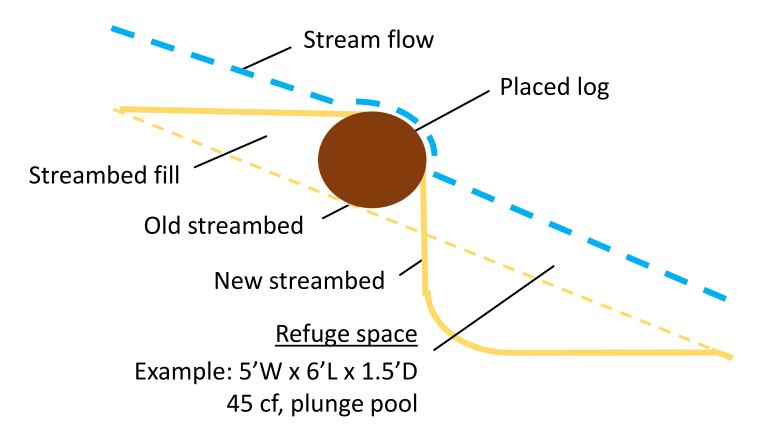
Sort, in/out: 1/0 Outfall elevation, ft Flow, Jul-Aug. cfs Score Flow, annual, cfs Score Drainage area, sq mi Score Max. elev, ft, x 1000 Stream length, mi Score Stream length, mi														
Tributary	Sor	Oun	Floi	Score	Floi	Score	Dra	Score	Ma	Score	Stre	Score	Total	Score
1 Bear	1	7895	49.55	100	51.50	100	33.70	100	13.2	93	15.60	100	493	100
2 East Fork	1	9603	35.70	72	36.10	70	17.00	50	13.7	96	7.03	45	334	68
3 Roaring Forks	1	8167	21.70	44	23.60	46	19.60	58	11.8	83	9.30	60	290	59
4 Scotch	1	8530	11.61	23	13.00	25	12.10	36	12.6	89	7.65	49	222	45
5 Barlow	1	9311	17.75	36	13.40	26	9.68	29	12.6	89	6.04	39	218	44
6 Coal	1	9190	10.73	22	11.40	22	6.41	19	13.8	97	6.42	41	201	41
7 Snow Spur	1	9603	8.26	17	13.40	26	9.68	29	13.2	93	6.04	39	203	41
8 Slate	1	9502	11.39	23	11.70	23	5.14	15	14.2	100	5.74	37	198	40
9 Priest	1	7974	7.93	16	9.05	18	9.61	29	11.5	81	7.81	50	193	39
10 Silver	1	9313	10.43	21	10.80	21	4.94	15	12.7	89	4.57	29	175	36
11 Kilpacker	1	9839	7.96	16	7.97	15	2.62	8	14.2	100	4.19	27	166	34
12 Fall (west)	1	8836	8.35	17	8.71	17	4.15	12	12.3	87	4.21	27	160	32
13 Meadow	1	9209	5.76	12	6.27	12	4.10	12	13.0	92	4.90	31	159	32
14 Wildcat	1	8341	4.83	10	5.51	11	5.27	16	11.9	84	5.34	34	154	31
15 Coke Oven	1	9310	5.04	10	5.46	11	3.34	10	11.9	84	4.06	26	141	29
16 Spring	1	8912	3.80	8	4.36	8	4.22	13	10.7	75	5.57	36	140	28

Pond option

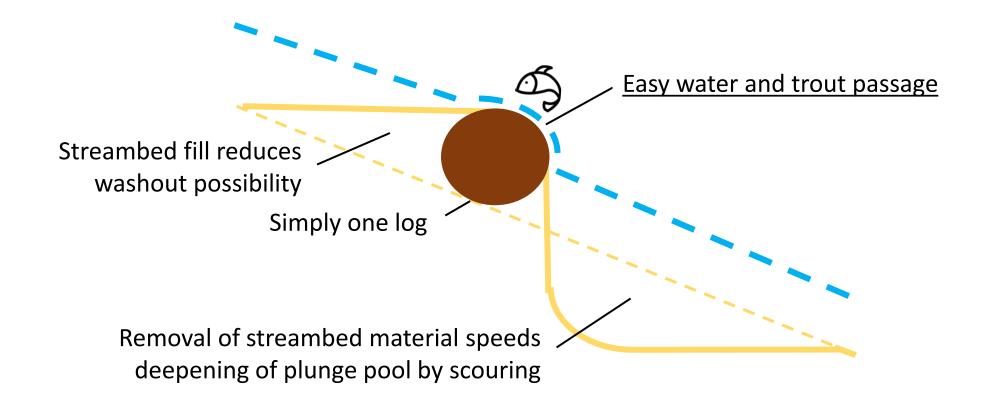
- Refuge is built by
- Increasing the <u>height</u> of water in the channel
- And increasing also its <u>width</u> by expansion onto the adjacent flood plain,
- Establishing refuge <u>upstream</u> of a dam structure.

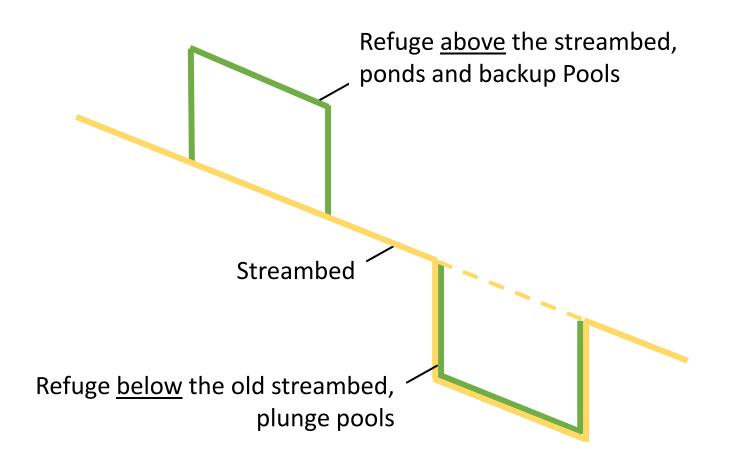

Backup pools option

- Refuge is created by
- Increasing water <u>height</u> within the channel,
- But not its width,
- To form in-channel refuge <u>upstream</u> of a dam structure.


Plunge pools option

- Refuge results from
- <u>Deepened</u> water within the stream channel,
- Which occurs from scouring action during high flows happening directly <u>downstream</u> of a placed log.


Sketch: Backup pool or pond configuration

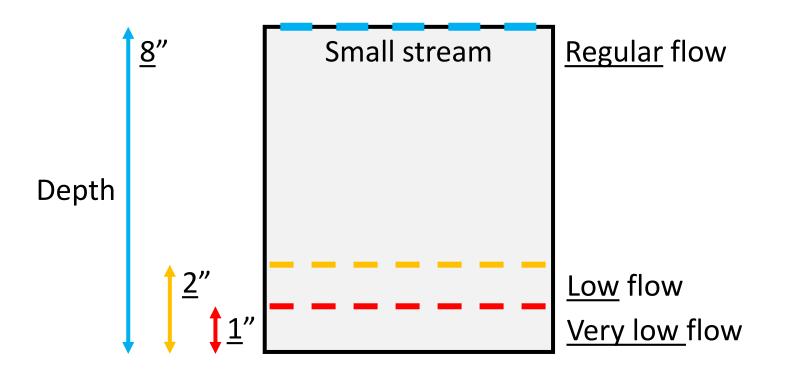

Sketch: Plunge pool configuration

<u>Appeal</u> of the plunge pool option

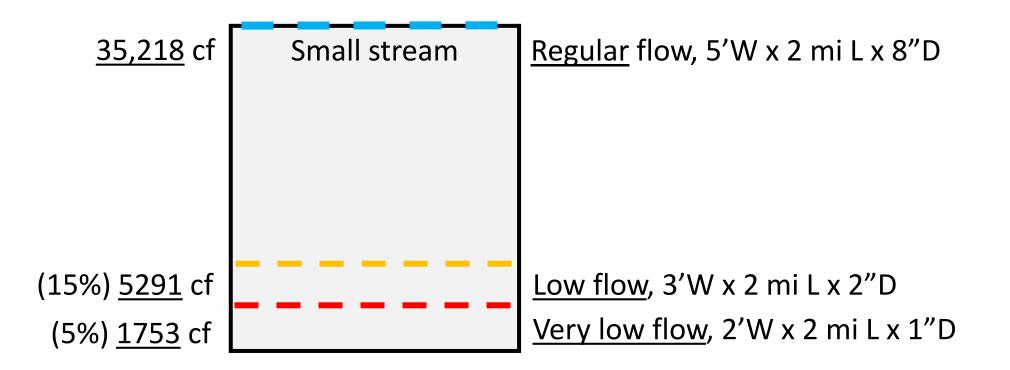
Key <u>difference</u> in refuge placement

Individual size

- Ponds observed in basin small streams were 25-35 ft wide, 30-50ft long, and 1-2 ft deep; these were beaver ponds.
- For this discussion, the representative <u>pond size</u> is 30 ft wide, 30 ft long, and 1.5 ft deep, a volume of 1350 cf.
- No backup pools were seen in the streams.
- The <u>backup pool size</u> conceptualized is 5 ft wide, 15 ft long, and 1.5 ft deep, a volume of 112.5 cf.
- Plunge pools observed in smalls streams were 5-7 ft wide, 5-10 ft long, and 1-4 ft deep.
- The representative <u>plunge pool size</u> used is 5 ft wide, 6 ft long, and 1.5 ft deep, a volume of 45 cf.


Total volume

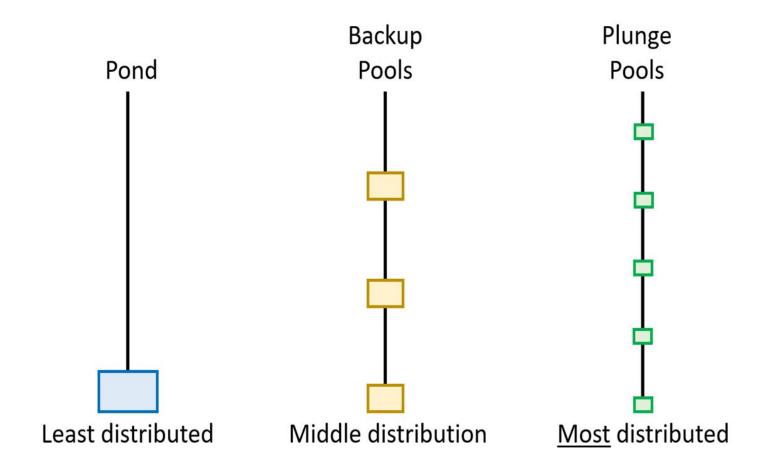
- The pond's 1350 cf is the <u>reference</u> refuge volume for this discussion.
- <u>12</u> backup ponds, 112.5 cf each, equal 1350 cf.
- <u>30</u> plunge pools, 45 cf each, total 1350 cf.


Comparison

- How does the reference refuge volume
- Compare with small stream volumes
- At very low, low, and regular flow conditions?
- Stream volumes are based on
- Observed flow depths at small streams
- In the lower 2 mi of stream length.
- How much greater is stream volume
- From the installation of refuge volume?

Stream depths

Stream volumes



Combined volume

- Resulting from the addition of one refuge volume (1350 cf),
- Stream volume is greater
- By <u>77</u>% during very low stream flow.
- By <u>26</u>% during low flow.
- By <u>4</u>% during regular flow.

- Plunge pools can be the <u>most</u> distributed.
- Which makes them the most accessible to the most trout.
- 30 plunge pools require the same level of effort to install as 12 backup pools or 1 pond.

Pond option

Advantages

- Largest individual refuge volume.
- May augment base flow.

Disadvantages

- Additional evaporation loss.
- Least distributed.
- Likely to leak; most maintenance.
- Likely to accumulate silt, which reduces refuge volume.
- Subject to washout.

Backup pools option

- Advantages
 - No additional evaporation loss.
 - May augment base flow.
- Disadvantages
 - Likely to leak; considerable maintenance.
 - Subject to washout.

Plunge pools option

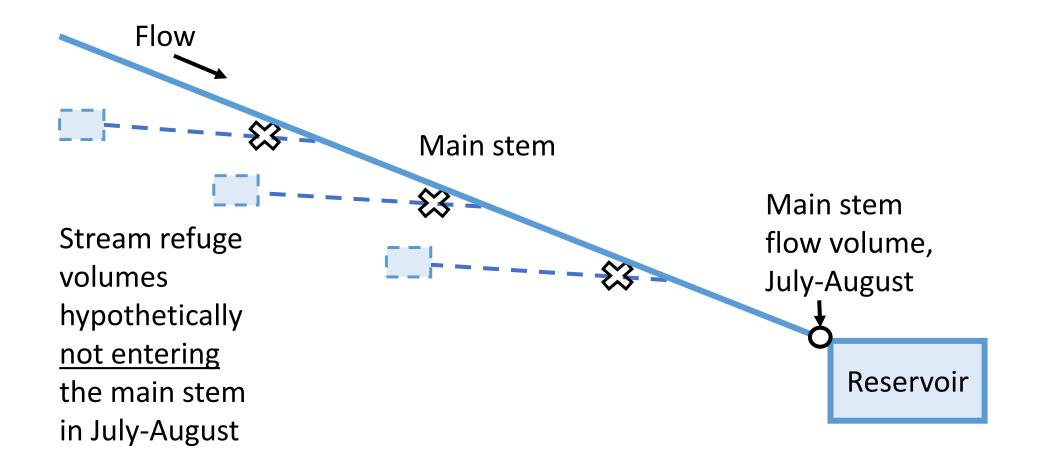
Advantages

- Simplest to build; most distributed; lowest maintenance.
- No additional evaporation loss; no dam; least likely to washout.
- Readily enables water and trout passage.
- Disadvantages
 - Smallest individual volume.
 - Numerous installations.

What about beaver dam analogs (BDAs)

Possibilities

- Picturesque concept: engagement with a beaver community.
- Ideally, beavers will maintain the dam, even expand it.
- Pond may augment baseflow and promote streamside vegetation.


Potential problems

- Beavers may not adopt or later may leave.
- Pond adds to evaporation loss of stream water.
- Dam is likely to leak and needs maintenance,
- And is subject to washout.

Downstream

- Assume that none of the stream water retained for trout refuge
- Enters the main stem in July and August.
- This portrays a <u>worst-case</u> scenario.
- How many refuge volumes would it take
- To <u>reduce</u> main stem flow volume by <u>0.1</u>%
- At the location where flow enters the reservoir?

Downstream flow consideration

Calculation results

- <u>Number</u> of refuge volumes (1350 cf) reducing main stem flow by 0.1%
- (Assuming none enters the main stem.)
- <u>68</u> at very low flow, 7D10Y, which is 7.2% of regular flow.
- <u>333</u> at low flow, which is 25% of regular flow.
- <u>1329</u> at regular flow.
- Conclusion: There would be no likely significant reduction in main stem flow volume in this worst-case scenario.

Calculation process

- Main stem flows were determined by applying the U.S. Geological Survey water resources program *Streamstats*.
- <u>Regular</u> is the average July-August flow.
- <u>Low</u> is 25% of regular flow.
- <u>Very low</u> is *StreamStats*' 7-day, 10-year (7D10Y) flow.
- The 62-day July-August period was used to calculate main stem volume.

Materials & tools

- Building trout refuge would use
- Materials available at streamside,
- That is, trees, logs, rocks, brush, and mud.
- And tools that are portable,
- Such as, saws, winches, pry bars, shovels, and ropes or chains.
- Certification is required for operating chainsaws on land managed by the U.S. Forest Service, the study basin.

Level of effort

- 5-10 (8-hr) workdays.
- Using a 4-person professional crew.
- For installation of any of the 3 options.
- That is, completion within 2 weeks.
- Volunteers may assist.

Monitoring & evaluation

Anticipations

- Woody debris may arrive behind dams.
- It can be removed or left for shading and refuge.
- Streambed material will fill behind dams.

Periodic assessments

- Document refuge volumes.
- Note decreases in function.
- Identify repairs or improvements.
- Measure water temperatures.
- Judge use by trout (simple, visual counting or assisted by electro-fishing).

Conclusions

- From among the options of a pond, backup pools, and plunge pools
- For building trout refuge against low and very low flow conditions
- In the small, mountain streams of the upper Dolores River basin,
- The possibly <u>best option</u>: plunge pools.
- None of the options will significantly reduce flow to the main stem.

Conclusions, cont.

- Plunge pools are likely the <u>most effective</u> because scouring will sustain the space.
- They will not accumulate streambed material or silt, that is, will not lose refuge volume.
- Provide the <u>most access</u> for distributed trout populations because they are distributed.
- Require the <u>least maintenance</u> since they use no dams that will need re-sealing or replacing.
- Are the <u>most resilient</u> since, due to streambed fill behind their log structure that redirects flow pressure, they are unlikely to wash out.