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Predicting Evaporation from Mountain Streams

Abstract: Evaporation can be an important control on stream temperature, particularly
in summer when it acts to limit daily maximum stream temperature. Evaporation from
streams is usually modelled with the use of a wind function that includes empirically derived
coefficients. A small number of studies derived wind functions for individual streams; the
fitted parameters varied substantially among sites. In this study, stream evaporation and
above-stream meteorological conditions (at 0.5 and 1.5 m above the water surface) were
measured at nine mountain streams in southwestern British Columbia, Canada, covering a
range of stream widths, temperatures, and riparian vegetation. Evaporation was measured on
twenty site-days in total, at approximately hourly intervals, using nine floating evaporation
pans distributed across the channels. The wind function was fit using mixed-effects models
to account for among-stream variability in the parameters. The fixed-effects parameters were
tested using leave-one-site-out cross-validation. The model based on 0.5-m measurements
provided improved model performance compared to that based on 1.5-m values, with RMSE
of 0.0162 and 0.0187 mm h−1, respectively, relative to a mean evaporation rate of 0.06 mm
h−1. Inclusion of atmospheric stability and canopy openness as predictors improved model
performance when using the 1.5-m meteorological measurements, with minimal improvement
when based on 0.5-m measurements. Of the wind functions reported in the literature, two
performed reasonably while five others exhibited substantial bias.

Keywords: stream temperature; evaporation; mass transfer model; wind function; latent heat
flux
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Introduction

Stream temperature influences aquatic ecosystems through its effects on growth rates (Elliott
& Hurley, 1997; Jensen, 1990), species distributions (Ebersole et al., 2001; Parkinson et al.,
2016; Wichert & Lin, 1996), and nutrient availability (LeBosquet Jr. & Tsivoglou, 1950).
Stream thermal regimes can be modified by natural disturbance such as forest fires (Fried
et al., 2004; Isaak et al., 2010; Luce et al., 2014), land use such as forest harvesting (Brown &
Krygier, 1970; Guenther et al., 2014), water withdrawals and impoundments (Gu et al., 1998;
Hockey et al., 1982; Morse, 1972; Olden & Naiman, 2010), and climatic variability and change
(Intergovernmental Panel on Climate Change, 2014; Isaak et al., 2016; Luce et al., 2014).
Streams and rivers are exhibiting warming trends in many regions, and there is increasing
concern that this warming will have deleterious impacts on cold and cool-water species such
as salmon (e.g., Isaak et al., 2018). In response to these concerns, there has been a growth of
interest in developing predictive tools to support management decisions using both empirical
and process-based approaches (e.g., Fabris et al., 2018; Null et al., 2013).

Process-based stream temperature models provide the most rigorous approach for simulat-
ing thermal response to environmental change. Process-based stream temperature modelling
is a mature but still developing field. Much of the foundational work was conducted in
the 1960s and 1970s (Edinger et al., 1974, 1968). Models have been developed using La-
grangian (Devkota & Imberger, 2012; Gu et al., 1998; Hockey et al., 1982; Vugts, 1974),
semi-Lagrangian (Yearsley, 2009), and Eulerian frames of reference (Sinokrot & Stefan, 1993;
Sridhar et al., 2004). Methods of solution have ranged from simple Euler integration for
Lagrangian models (Hockey et al., 1982; Leach & Moore, 2011) to sophisticated numerical
solutions of partial differential equations in a Eulerian framework that are capable of handling
unsteady flow (Kim & Chapra, 1997; Younus et al., 2000) and multiple-component transient
storage processes (Bingham et al., 2012; Buahin et al., 2019; Cardenas et al., 2014; Meier
et al., 2003; Neilson et al., 2010; Westhoff et al., 2010). Even with the increasing complexity
and sophistication of numerical schemes for modelling stream thermal processes, the accuracy
of stream temperature simulations still depends on accurate modelling of stream surface
energy exchanges.

Net radiation is often the dominant surface energy exchange, especially in summer during
periods of low flow, when concerns about stream warming are often most acute (Khamis et al.,
2015; Leach & Moore, 2010, 2019; Maheu et al., 2014; Morin et al., 1994; Webb & Zhang,
1997). Substantial progress has been made in the development of methods for modelling
both shortwave and longwave radiation. For example, the effects of riparian vegetation on
shading and the sky view factor can be estimated using hemispherical photographs (Moore
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et al., 2005), geometric models (Chen et al., 1998; Li et al., 2012; Moore et al., 2014; Sridhar
et al., 2004), and canopy characteristics derived from light detection and ranging (LiDAR) or
photogrammetry (Dugdale et al., 2019; Loicq et al., 2018; Richardson et al., 2019). McMahon
& Moore (2017) developed an empirical model for computing stream surface albedo as a
function of solar angles, turbidity, and aeration.

Less attention has focused on the sensible and latent heat fluxes, despite the fact that latent
heat transfer associated with evaporation can be an important heat loss mechanism; studies of
stream heat budgets have computed daily losses ranging up to 42 % of the net radiation for a
range of sheltered streams (Caissie, 2016; Leach & Moore, 2010; Maheu et al., 2014; Webb &
Zhang, 1997). Stream evaporation should increase at higher stream temperatures because of
the approximately exponential dependence of surface vapour pressure on water temperature.
Therefore, the role of latent heat transfer should become more important as streams and
rivers continue to warm, especially in arid regions where streams are not sheltered by riparian
forest (Mohseni & Stefan, 1999).

In models for snow and glacier melt, the sensible and latent heat fluxes are commonly
computed using semi-empirical bulk aerodynamic formulae, which use air temperature,
humidity, and wind speed measurements at one height above the surface, and which explicitly
account for measurement height, surface roughness, and atmospheric stability (Conway et al.,
2018; Moore, 1983). However, the fetch required to satisfy the underlying assumptions
of bulk aerodynamic formulae can be two or more orders of magnitude greater than the
measurement height (Oke, 1987). Consequently, these equations are not applicable to small
and medium-size streams. As an alternative, stream evaporation is often predicted using
empirical mass transfer equations, typically based on the following Dalton-style wind function:

E = (a+ b · u) · (ew − ea) (1)

where E is evaporation rate, u is wind speed, ew and ea are the vapour pressures of the water
surface and ambient air, respectively, and a and b are empirically determined coefficients.

Many stream temperature modelling studies have used wind function models based on
energy-balance estimates of evaporation from lakes and ponds (e.g., Brady et al., 1969; King
& Neilson, 2019). However, lake- and pond-derived mass transfer models may perform less
well when used to estimate stream evaporation due to the lower fetch, especially for sheltered
streams (Gulliver & Stefan, 1986; Jobson, 1980). The model with coefficients reported
by Webb and Zhang (1997) has been applied with reasonable success to predict stream
temperature in a range of studies (e.g., Garner et al., 2014; Leach & Moore, 2011; Magnusson
et al., 2012). The Webb-Zhang model appears to have been adapted from the wind function
developed by Penman (1956) by applying unit conversions; thus, the Webb-Zhang model
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has empirical support based on measurements over a range of “wet” surfaces. Although
the coefficients appear to have originated with Penman (1956), they will be called here the
“Webb-Zhang” coefficients to avoid confusion with the Penman combination equation for
wet-surface evaporation, and in recognition that Webb & Zhang (1997) is the commonly
referenced source for those model coefficients.

Empirical mass transfer functions for streams have been derived by energy-balance analysis
in three studies focused on artificial or experimental channels (Fulford & Sturm, 1984; Gulliver
& Stefan, 1986; Jobson, 1980) and by measuring evaporation using in-stream pans in four
studies of natural streams (Benner, 2000; Caissie, 2016; Guenther et al., 2012; Maheu et al.,
2014). Guenther et al. (2012), Maheu et al. (2014), and Caissie (2016) each focused on either
one or two streams, all in forested catchments, while Benner (2000) focused on nine sites
along an arid-land stream in Oregon.

One challenge to comparing stream-derived wind functions is that Jobson (1980), Fulford
& Sturm (1984) and Gulliver & Stefan (1986) used meteorological measurements over a
land surface, whereas the other studies (i.e., Benner, 2000; Caissie, 2016; Guenther et al.,
2012; Maheu et al., 2014) used meteorological measurements over the stream surface. In
addition, meteorological measurements were made at different heights. Most studies used
measurements made 2 m above the surface, or, as in the case of Gulliver & Stefan (1986),
wind speed was measured at 9 m but adjusted to represent measurements at 2 m. Benner
(2000) used meteorological data measured 0.5 m above the surface and Guenther et al. (2012)
used measurements at 1.5 m above the surface. Even just considering the most comparable
studies (Caissie, 2016; Guenther et al., 2012; Maheu et al., 2014), the fitted wind functions
varied substantially. For example, the coefficient for wind speed ranged from 0.035 to 0.19
mm h−1 s m−1 kPa−1. Although some of the variation in fitted wind functions may reflect
methodological differences among studies, it could also reflect the effects of site-specific
conditions on boundary-layer development over the stream surface, such as atmospheric
stability, fetch, and the effects of sheltering by riparian vegetation.

The preceding review indicates that the lack of a robust, spatially transferable model
for sensible and latent heat fluxes introduces an as-yet-unquantified source of uncertainty
into stream temperature predictions. The broad goal of this study was to contribute to the
development of a robust, transferable model of stream evaporation for inclusion in process-
based stream temperature models. As a starting point, this research focused on nine forested
sites in a temperate mountain region. Evaporation was measured using instream pans over
multiple dates and wind functions were fit using above-stream meteorological data at two
heights to quantify the effect of measurement height. The candidate models included indices
of atmospheric stability and sheltering by forest canopy in order to account explicitly for
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these site-specific controls on wind function parameters.

Methods

Study sites

Field work was conducted at nine streams in southwest British Columbia, Canada (Figure 1).
The streams were distributed between a coastal region and a region approximately 100 km
inland (Figure 2). The coastal region has a typical maritime climate with cool, wet winters
and mild summers. Mean daily air temperatures at a climate station near the study streams
range from 14.9 to 17.7 ◦C from June to August, with mean total precipition of 233 mm over
the same months. The inland region has relatively colder and drier winters, with warmer and
drier summers; mean daily air temperatures from June to August range from 16.3 to 19.2 ◦C,
with a corresponding mean total precipitation of 112 mm. See Table S.1 for more detailed
climatic information.

The study sites were selected to sample a range of stream widths, thermal regimes, and
riparian vegetation conditions (see Table S.2 in supporting information). The sites were
primarily located in coniferous forests, but three stream sites had deciduous trees dominant
in their riparian vegetation.

Bankfull width was measured and averaged across three transects at each study site using
a 30 m Sokkia/Eslon surveying tape, except at Rutherford Creek where an LTI Impulse 2000
laser rangefinder was used. The transects were spaced such that they bounded the reach where
the evaporation pans were deployed. The reach lengths ranged from 5 to approximately 20 m,
with longer reaches corresponding to wider streams. Five to six mature trees representative
of the local species distribution were selected for tree height measurements; the average was
used to characterize each site. Tree height, ht (m), was calculated as follows:

ht = HD × (tan θp − tan θn) (2)

where HD is the horizontal distance from the measurement location to the tree (m), and θt

and θb are the angles of inclination, in degrees, from the measurement location to the top
and the bottom of the tree, respectively. The horizontal distance was measured using the
surveying tape and the angles of inclination were measured using a Suunto PM-5 inclinometer.
Canopy openness, as a proportion, was estimated from a hemispherical photograph taken
at each site using the image processing software, Gap Light Analyzer (GLA) following the
methods detailed by Frazer et al. (1999). The photographs were taken using a Nikon Coolpix
4500 digital camera with a Fisheye Converter FC-E8 lens attached. The camera was mounted
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on a tripod and placed in the centre of the stream reach where evaporation and meteorological
measurements were made, and levelled prior to taking a photograph. The photographs were
taken on days when the sky was uniformly overcast, or in the early morning on days with
clear skies.

Stream bankfull widths ranged from 3.1 m to 27.6 m, average tree heights ranged from 5.3
m to 46.7 m, and canopy openness ranged from 9 % to 70 %. Study site elevations ranged
from 52 to 1139 masl. The three streams in the interior region drain glacierized catchments
and have higher snowmelt contributions, while the coastal region streams have hybrid rain-
and snow-dominated hydrologic regimes.

Stream evaporation measurements

Stream evaporation was measured using the gravimetric approach developed by Maheu
et al. (2014). Each evaporation pan consisted of a plastic container with dimensions of
21.3 × 21.3 × 5.1 cm that was supported by a square wooden frame 34 cm wide, 1.9 cm thick,
with an inner opening of 21.4 × 21.4 cm. The frame was painted white to minimize absorption
of solar radiation and warming, and was tethered to a concrete anchor to keep it in place
when deployed in a stream.

Evaporation measurements were made on 20 days between June 6th and August 17th,
2018; field work was restricted to days without precipitation. On each sampling day, nine
evaporation pans were deployed within the channel in pools or locations with low flow velocity.
Three pans were placed along each of the left and right banks, and three in the centre of the
channel or pool (Figure 3). A preference was given to locations where the evaporation pans
could be distributed across the width of the channel, or if that was not feasible, then across
the width of a pool.

Each evaporation pan was initially filled with stream water to within about 2 cm of its
rim, and then weighed using an Ohaus Scout SPX2201 portable balance (resolution ± 0.1 g).
The mass was measured approximately every 1 to 1.5 hours. The evaporation rate over each
measurement interval was computed as

E = − ∆M · cf

ρw · A · ∆t (3)

where E is evaporation rate (mm h−1) (positive for evaporation, negative for condensation),
∆M is the change in mass over the measurement interval (kg), ρw is the density of water (kg
m−3), ∆t is length of the measurement interval (s), A is the surface area of the water in the
pan (m2), and cf is a conversion factor equal to 3.6·106, to convert E from m s−1 to mm h−1.
The average evaporation rate over each measurement interval was computed from the nine
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pans’ evaporation measurements.
Stream temperature was recorded every 10 minutes with an Onset TidbiT v2 water temper-

ature logger, which was housed in a white PVC radiation shield to reduce direct solar radiation
effects. The water temperature in each evaporation pan was measured approximately every
20 minutes using an Omega Engineering HH-25TC thermocouple thermometer (resolution
± 0.1 ◦C). Temperature measurements were made in the top 1 cm to represent, as closely
as possible, temperature at the water surface. A cross-calibration between the TidbiT and
the thermocouple was conducted, along with three other water temperature sensors. For the
range of temperatures measured in the field, the thermocouple and TidbiT sensor agreed
within ± 0.1 ◦C for 17 of 24 calibration measurements, and the maximum difference was 0.22
◦C. Considering all five sensors, the range of contemporaneous measurements was less than or
equal to 0.3 ◦C for 23 of 24 calibration measurements, with a maximum difference of 0.47 ◦C.

A continuous record of pan water temperature was generated through linear interpolation
from the manual measurements, using the approx() function in R (R Core Team, 2019).
On days early in the study, when pan water temperature measurements were not made
consistently at all pans, the average water temperature difference between the evaporation
pans and the stream was used to adjust the recorded stream temperature.

The evaporation pans had slightly curved sides. An empirical model was developed to
estimate the surface area of water as a function of mass by setting up a pan on the same scale
used to make field measurements. The pan was filled with blue-dyed water in increments of
approximately 0.025 kg. After each increment was added, a photograph was taken vertically
downward from a camera on a tripod. Surface area was determined for each photograph
using the ImageJ software package (Schneider et al., 2012).

Above-stream meteorological data collection

Meteorological conditions 1.5 m and 0.5 m above the stream surface were monitored during
evaporation measurements using a Campbell Scientific CR10X data logger. Campbell
Scientific HMP45C sensors measured air temperature and relative humidity (RH), with stated
accuracies of ± 0.2 ◦C and ± 2 to 3 % RH, respectively, at 20 ◦C. Wind speed was measured
with MetOne 014A 3-cup anemometers, which have nominal starting threshold speeds of 0.45
m s−1. Anemometers used in the field were calibrated against two that had been recently
serviced by the manufacturer. See Szeitz (2019) for further details.

All sensors were mounted on tripod cross-arms that extended the sensors over the centre
of the stream (Figure 3), or in cases where the evaporation pans did not span the full stream
width, the sensors were positioned over the centre of the evaporation pans’ distribution. The
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meteorological sensors were scanned every 10 seconds, and 10-minute averages were logged
on a Campbell Scientific CR10X datalogger.

The datalogger was programmed to compute wind speed as 0.80·x + 0.447, where x is
the pulse-count rate and 0.447 represents the anemometer’s stall speed in m s−1. An option
was enabled such that, if the wind speed was equal to the threshold value (0.447) over a
scan period, a value of 0 was returned. Therefore, over 10-minute intervals in which the
wind speed was consistently below the threshold value, a value of 0 wind speed was returned.
Alternatively, for 10-minute intervals in which there were periods with wind speed both above
and below the stall speed, the program could return a wind speed between 0 and 0.447 m s−1.

Calculation of meteorological variables

The saturation vapour pressure, es(T ) (kPa), at a temperature T (◦C) was computed as:

es(T ) = 0.611 × exp
( 17.27 · T
T + 237.26

)
(4)

The vapour pressure at the water surface, ew, was then computed as:

ew = es(Tw) (5)

where Tw is the water temperature of the pan or the stream. The vapour pressure of the air,
ea, was calculated as:

ea = es(Ta) · RH100 (6)

where Ta is the air temperature and RH is the relative humidity (%). The vapour pressure
difference, ∆e, driving evaporation was then calculated as:

∆e = ew − ea (7)

Two atmospheric stability indices were calculated. For both indices, a value of zero indicates
neutral conditions and negative values indicate unstable conditions. One is the virtual
temperature difference between the stream surface and the air above it, ∆θ (◦C), which
represents the vertical variation in air density above the stream (Gulliver & Stefan, 1986).
The virtual temperature, θ (K), of a fluid parcel is calculated as:

θ = T + 273.15
1 + 0.378 · e/p

(8)

where p is the atmospheric pressure (kPa), e is the vapour pressure (kPa) and T is the
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temperature (◦C) of the fluid, namely the stream or the overlying air. As p was not measured,
a standard pressure, P , for each field site’s elevation was estimated using the U.S. Standard
Atmosphere, 1976, atmosphere model (USS, 1976) as follows:

P = Pb ·
(

Tb

Tb + Lb · (h− hb)

) g·Ma
R∗·Lb

× kp (9)

where h is the elevation of the field site (m), and Pb, Tb, Lb, and hb are the standard pressure
(101.325 kPa), temperature (288.15 K), temperature lapse rate (0.0065 K km−1), and reference
elevation (0 m) where 0 < h ≤ 11, 000 m; g (m s−2) is gravitational acceleration, Ma (kg
mol−1) is the molar mass of air, R∗ (J mol−1 K−1) is the universal gas constant, and kp

is a conversion factor equal to 1 × 10−3 to convert from units of Pa to kPa. The virtual
temperature difference was then calculated as:

∆θ = θw − θa (10)

where θw is the virtual temperature at the water surface, and θa is the virtual temperature of
the air above the water.

The second stability index used was the buoyant force, γ (m s−2), which relates buoyant
differences to temperature differences between two fluid parcels. It was calculated as:

γ = g
(
Tw + 273.15
Ta + 273.15 − 1

)
(11)

Both stability indices were evaluated as predictors. They performed similarly as predictors,
with the buoyant force providing slightly superior performance, so subsequent reference to a
stability index will refer solely to the buoyant force.

Evaluation of models from the literature

We used the data collected in this study to evaluate the performance of wind function models
derived in four previous stream-based studies (Benner, 2000; Caissie, 2016; Guenther et al.,
2012; Maheu et al., 2014) and two non-stream-based wind functions commonly used in stream
temperature models (Brady et al., 1969; Webb & Zhang, 1997). When applying the wind
functions of Maheu et al. (2014), Caissie (2016), Brady et al. (1969), and Webb & Zhang
(1997) using meteorological data from this study, wind speed data for 1.5 m above the stream
were adjusted to 2 m (7 m for the Brady et al. (1969) wind function) using a power-law
relation (Sutton, 1953). No adjustments were made to the vapour pressures. For the Benner
(2000) model, meteorological measurements made at 0.5 m above the stream were used as
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input to be consistent with the measurements in that study.
For comparison to the literature models, we fit a “base” model of the form of Eq. 1 to our

data. Whereas previous studies fit wind function models separately by site, models were fit in
this study to the full data set using mixed-effects statistical models. Mixed-effects models are
based on the assumption that there is a set of fixed-effects coefficients that apply throughout
the population of sites to which the model is intended to apply, and that the coefficients at
any given site exhibit random deviations from the fixed-effects values. As applied in this
study, the goal of mixed-effects models is to derive the best model that could be applied
to new sites with no additional calibration. Mixed-effects models are common in biological
science and ecology, but have had fewer applications in hydrology; some hydrological examples
include Booker & Dunbar (2008), Kasurak et al. (2011), Ploum et al. (in press) and Howie
et al. (2020).

When framed as a mixed-effects model, the base wind function model can be expressed as

Eik = (a+ αk) · (ew,ik − ea,ik) + (b+ βk) · wik · (ew,ik − ea,ik) + εik (12)

where the subscript k indicates a specific site; the subscript i indicates the ith observation at
site k; a and b are fixed effects that are assumed to apply to the entire population of sites;
αk and βk are deviations from the fixed-effects coefficients for site k, assumed to be drawn
from normally distributed populations; and εik is a random error term. If the model were
applied to a new site, only the fixed-effects coefficients (a and b) would be used. If the model
were applied to new observations from one of the original sites, then both the fixed effects
and the random effects for that site (αk and βk) would be used.

The performance of the fitted models was evaluated using leave-one-site-out cross-validation.
In each iteration of the cross-validation, all data for one site were withheld; the model was fit
using data for the remaining sites and then applied using the fixed-effects coefficients to data
for the withheld site. Model performance was determined by computing the root-mean-square
error (RMSE, mm h−1) and the Nash-Sutcliffe efficiency (NSE), as follows:

RMSE =
√√√√ 1
n

n∑
i=1

(
Êi − Ei

)2
(13)

NSE = 1 −
∑n

i=1

(
Êi − Ei

)2

∑n
i=1

(
Ei − Ē

)2 (14)

where Êi is the modelled evaporation rate, and Ē is the mean observed evaporation rate from
the nine pans for a given measurement interval.
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To evaluate the sensitivity of the results to uncertainties in the pan temperatures, the
model comparison was conducted using both the recorded ambient stream temperature and
the interpolated pan water temperature to determine ew.

Evaluation of extended models and effect of measurement height

In addition to applying the base model, we tested the performance of extended models that
included additional predictors. Specifically, canopy openness (φ) and buoyant force (γ) were
incorporated as additional model predictors in various combinations to form a total of 12
candidate models as listed in Table 1.

Separate models were fit for each of the two measurement heights (0.5 m and 1.5 m). The
12 expanded models listed in Table 1 were fit using the mixed-effects approach described above,
and with surface vapour pressure computed using the interpolated pan water temperatures.
In the first round of model testing, the mixed-effects models allowed each model parameter,
(a, b, and if present, c and d), to vary by site. Any model that had one or more insignificant
estimated fixed-effects coefficients (p-value > 0.05) was dropped from further consideration.

Results

Evaporation pan water temperature

For eight of the nine streams, water in the evaporation pans averaged between 0.51 and 1.64
◦C warmer than stream temperature. The exception was Marion Creek, however, which had
consistently lower pan water temperatures with an average difference of -0.66 ◦C (Figure 4).
The trend in the water temperature difference typically followed the stream temperature
trend, but there was variability among pans depending on their exposure to solar radiation
(Figure S.1). Individual openings in the canopy provided localized pools of sunlight to the
stream, which increased the water temperature of any evaporation pans they crossed over
the course of a day. The full daily time series of stream and evaporation pan temperatures
can be found in the Supporting Information (Figure S.2).

Meteorological conditions and evaporation rates

The distributions of measured and derived meteorological conditions, and the measured
evaporation rates, are presented in Figure 5. The meteorological and stream temperature
data are at 10-minute intervals, and the evaporation rate measurements are at approximately
1- to 1.5-hour intervals. Time series of meteorological data are provided in the Supporting
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Information (Figure S.3).
As seen in Figure 5 (top panel) and in the supporting information (Figure S.3), air

temperatures were typically greater than stream temperature, and increased with height
above the stream surface (Figure 6, top panel). Exceptions to this trend were observed at
Marion Creek and Blaney Creek (Lower), as the former had higher stream temperatures than
air temperatures at almost all times, and the latter experienced several hours of nearly equal
stream and air temperatures on July 5th. Both of these study sites are downstream of lakes
that are subject to substantial warming.

Measured wind speeds often increased with height above the stream surface but not
consistently (see Figure 6, middle panel, and supporting information, Figure S.3). A generally
negative relation exists between the average difference in wind speeds, the local canopy
openness, and the sheltering ratio. As seen in Table 2, both of the Blaney Creek sites and
Spring Creek have sheltering ratio values > 4 and canopy openness values < 0.25, and they
experienced the greatest average wind speed differences, ranging from 0.12 to 0.22 m s−1.
Conversely, Alouette River and Miller Creek have low sheltering ratios (< 1) and greater
canopy openness values (> 0.50), and they experienced average wind speed differences of
approximately 0.02 m s−1.

The vapour pressure at 0.5 m was greater than the vapour pressure at 1.5 m for 95 % of
the observations (Figure 6, bottom panel); see also Supporting Information (Figure S.3). The
greatest vapour pressure differences were associated with the highest stream temperatures,
as observed at Marion Creek and Alouette River (Figure 5).

Conditions were generally stable, with unstable conditions indicated for only 12 to 14 %
of the time at heights of 1.5 and 0.5 m, respectively. The exception to this trend was Marion
Creek; it was dominated by unstable conditions, which occurred > 97 % of the time, at both
heights.

Evaporation rates ranged from -0.01 to 0.20 mm h−1 with a mean evaporation rate of
0.06 mm h−1 (Figure 5). As expected, evaporation rates generally increased with increasing
vapour pressure differences and/or higher wind speed (e.g. comparing Alouette River to
Marion Creek, Figure 5 panel 4).

An error analysis indicated that the mean uncertainty in the measured evaporation rate
for an individual pan measurement was 0.004 mm h−1 (see Supporting Information). The
uncertainty in the mean evaporation rate, as represented by a statistical confidence interval
around the mean, was greater than the measurement uncertainty for an individual pan.
Indeed, for three observations of low evaporation rates, the 95 % confidence intervals were
greater than the magnitude of the observations (Figure S.4). This result indicates that
sampling variability was often substantially greater than the uncertainty of an individual pan
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measurement. The median relative uncertainty in mean evaporation was 13 %.

Literature wind function comparison

Fitted model coefficients vary substantially among studies (Table 3). Relative model perfor-
mance was consistent regardless of whether the ew, and by extension the ∆e, was computed
using the stream or the pan water temperature (Figure 7). However, performance of the
fitted models, and those of Brady et al. (1969) and Webb & Zhang (1997), was slightly better
when using the interpolated pan temperatures.

As seen in Figure 7, the models of Benner (2000) and Maheu et al. (2014) consistently
overestimated evaporation, the model of Caissie (2016) overestimated on average but had high
variability, and the model of Guenther et al. (2012) consistently underestimated evaporation.
Both the Brady et al. (1969) and Webb and Zhang (1997) models performed similarly to this
study’s base model (Figure 8).

Effects of additional predictors and measurement height

Of the model forms in Table 1, no model that expanded upon the base mass transfer model
with a stability index alone was significant. Models that expanded upon the base model
with a canopy openness variable alone were only significant when the canopy variable was
an interaction term on the wind speed. Models that included both a stability and canopy
variable often had multiple forms that were fully significant.

The results of the cross-validation of the significant models are summarized in Table 4.
Model performance was considered on the basis of the root-mean-square error, and the best
performing models’ estimated coefficients are provided in Table 5. The base model performed
well under cross-validation for both the 0.5-m and 1.5-m measurements; the 0.5-m model had
a root-mean-square error (RMSE) of 0.0162 mm h−1 and a Nash-Sutcliffe efficiency of 0.897,
while the 1.5-m model had respective values of 0.0187 mm h−1 and 0.862.

Of the models based on 1.5-m measurements that had significant coefficients, 72 % improved
upon the performance of the base model under cross-validation compared to 29 % for the
filtered 0.5-m models. The best performing expanded model fit to the 0.5-m measurements,
Model 9, provided a 2 % reduction in the RMSE from the base model. The best performing
expanded model fit to the 1.5-m measurements, Model 11, provided an 11 % reduction in the
RMSE. The cross-validated model predictions for the selected models in Table 1 are shown
in Figure 8. While the expanded 0.5-m model had better goodness-of-fit indicators than the
expanded 1.5-m model, they both had similar site-specific residual error distributions, with
the exception of the streams draining glacierized catchments (Cayoosh Creek, Miller Creek,
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Rutherford Creek) as seen in Figure 9.
While the fixed-effects coefficients are used during model cross-validation and when

applying the models to external datasets, the magnitudes of the site-specific adjustments for a
given model provide information on how much site-specific variability is not accounted for by
the fixed-effects terms in the model. The base model’s site-specific adjustments ranged from
0.4 to 37 % of the fixed-effect coefficient value for the 1.5-m model, and between 1 and 25 %
for the 0.5-m model. This result indicates that there was site-specific variability unaccounted
for by the base model predictors, especially for the 1.5-m model. However, the expanded
models’ site-specific adjustments were less than 0.001 % of the fixed-effect coefficient value
for both the 1.5-m and 0.5-m models. That is, explicitly incorporating canopy openness and
stability predictors into the model effectively accounted for the site-specific variability that
was otherwise accounted for through site-specific random-effects adjustments to the wind
function.

Discussion

Assessment of evaporation pan methodology

Overall uncertainty in the mean evaporation rate for a given measurement interval, as
expressed in the confidence limits around the mean, is a combination of random measurement
error and sampling variability. Given the design of the pans and their mode of deployment in
this study, each pan was able to provide an estimate of evaporation with a mean uncertainty
of 0.004 mm h−1, relative to mean and maximum measured rates of 0.06 and 0.20 mm
h−1, respectively. However, the confidence limits for the mean evaporation were generally
greater than the uncertainty in an individual pan measurement, suggesting that sampling
variability was the dominant source of uncertainty. Sampling variability arises because the
pans experienced variable conditions caused, for example, by differences in pan water heating
due to sunlight infiltrating canopy gaps, or differences in wind exposure due to in-stream
boulders or overhanging vegetation. While the overall uncertainty increased with increasing
mean evaporation rates, its relative magnitude decreased. For example, the mean overall
uncertainty was 27 % of the mean evaporation rate at Miller Creek (0.006 mm h−1 and 0.022
mm h−1, respectively), while the mean overall uncertainty at Rutherford Creek was 7.6 %
of the mean evaporation rate (0.010 mm h−1 and 0.136 mm h−1, respectively). Considering
all streams, the results indicate that an overall uncertainty of approximately 18 % of the
mean measured value can be achieved for typical conditions by deploying nine evaporation
pans. This result highlights the need for replication of pans to achieve an appropriate level of
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accuracy.
The water temperature in the evaporation pans often differed substantially from that of

the stream, ranging from 1.4 ◦C lower to 4.5 ◦C higher than stream temperature. The time
series of pan water temperatures show that frequent temperature fluctuations occurred within
measurement intervals, and warming occurred within 10 to 20 minutes of pan deployment on
numerous occasions (Supporting Information, Figure S.2). If this temperature difference were
not accounted for, the vapour pressure difference used in the wind function would often be
underestimated, potentially leading to an overestimate of the fitted wind function coefficients,
as seen in Table 3.

Given the observed rates of pan warming, it is recommended that future users of this
methodology measure the surface temperature of the water in the evaporation pans with high
temporal resolution (e.g., every 10 minutes). In addition, it may be useful to experiment with
alternative materials. The pans used in this study were made from plastic with a recycling
code of 5, indicating polypropylene. Published thermal conductivities for polypropylene range
from 0.10 to 0.22 W m−1 ◦C−1 (Engineering Toolbox, 2003). For comparison, aluminum has
a thermal conductivity of approximately 240 W m−1 ◦C−1 (Engineering Toolbox, 2003).

It was only possible to deploy the pans at sites with placid flow, and the water in the pans
was not moving. Based on a limited set of experiments, Benner (2000) found that evaporation
from moving water was greater than that for still water at low wind speeds with low vapour
pressure differences. However, these conditions are associated with low evaporation; Benner
(2000) found minimal difference in evaporation from still and moving water for conditions
conducive to higher evaporation. A more serious limitation relates to the potential effect of
aeration on evaporation. Aerated water has a greater effective surface area than water with
placid flow, which could enhance sensible and latent heat exchanges. Therefore, there is some
question about the applicability of the fitted wind functions to steep streams, especially at
higher flows when aeration becomes stronger.

Meteorological data measurement height and instrument sensitiv-
ity

Previous studies used measurement heights of 1.5 or 2 m, with the exception of Benner
(2000), who used a measurement height of 0.5 m. In this study, the a coefficient for the
0.5 m measurement height (0.0815 mm h−1 kPa−1) was higher than that for the 1.5 m
measurement height (0.0663 mm h−1 kPa−1), while the b coefficient was similar between the
two measurement heights. The increased value of a with decreased measurement height is
consistent with the fact that the vapour pressure difference driving evaporation should decrease
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with decreasing measurement height, as was the case for the majority of measurements.
Model performance was better when using meteorological measurements from 0.5 m rather

than 1.5 m above the stream surface, producing a 13 % reduction in root-mean-square error
for the base model. This superior performance could result from the fact that measurements
at a lower height would be closer to being in an internal boundary layer adjusted to the water
surface. Although this result might encourage the use of lower measurement heights, an
important consideration is that stream stage varies with discharge; this point is particularly
relevant for proglacial streams, which experience significant diel fluctuations in discharge.
As a consequence, wind functions derived from measurements at a specific height would not
be accurate when applied to streams with varying stages with meteorological measurements
at a fixed height. As the gradients of wind speed and vapour pressure tend to decrease
with increasing height above a surface, this source of error would be greatest for wind
functions derived from measurements at a low height. A further consideration relates to
instrument precision. Because wind speed and surface-to-air vapour pressure differences
generally increase with height above a stream, these measured values should be subject to
less relative uncertainty when measured at a greater height above the stream surface.

Given the starting-speed limitations of the cup-type anemometers often employed for
meteorological measurements, low wind speeds are likely to be under-reported for sheltered
streams. In cases where the wind-function intercept is non-zero, the model implicitly adjusts
for the effect of the anemometer’s stall speed on the estimated coefficient values. However,
if these models were applied using wind speed data obtained from a sensor with increased
accuracy (lower starting/stalling speed), the predictions would be biased for low wind speeds.
Empirically derived wind functions must be applied with consideration of the accuracy of
the instruments used to obtain the fitting data in order to produce reliable and unbiased
estimates.

Effects of additional predictor variables

For both meteorological measurement heights, the addition of a stability variable alone was
either not significant or did not improve model predictions. For measurements made at 1.5 m,
the addition of canopy and stability variables together provided modest model improvement,
with an 11 % reduction in root-mean-square error and an increase in the Nash-Sutcliffe
efficiency from 0.862 to 0.891. However, for measurements made at 0.5 m, the addition of a
canopy variable alone outperformed the addition of both variables, but provided marginal
improvements over the base model (2 % reduction in root-mean-square error, increased
Nash-Sutcliffe efficiency from 0.897 to 0.900).
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The relatively minor improvement associated with the expanded models suggests that
stability played a minor role compared to the forced convection influence of wind on vapour
transfer for these small, relatively sheltered streams. However, the limited range of stability
conditions observed in the current study may have been insufficient to comprehensively
evaluate its influence. The benefit of adding stability and/or canopy openness predictors for
both measurement heights is that they account for the site-to-site variability that could not
be accounted for by the base model. While the stability index can be computed from air and
stream temperatures, canopy openness is not typically available. Where field measurements
are not available, canopy openness could be estimated using satellite imagery (Carreiras
et al., 2006), LiDAR data (Korhonen et al., 2011) or photogrammetry (Dugdale et al., 2019).
Given these concerns and those discussed in the previous section, it is recommended that the
expanded 1.5 m model be used if canopy openness measurements are available, or reliable
estimates can be obtained, given its superior performance over the base model.

Comparison of wind function coefficients among studies and scope
of application

Most studies of stream evaporation focused on one or at most two streams and produced
site-specific estimates of the wind function coefficients (Table 3). Interestingly, the models
developed using stream evaporation measurements performed relatively poorly when applied to
our data, with both consistent overestimation (Benner, 2000) and underestimation (Guenther
et al., 2012). On the other hand, both the Brady et al. (1969) and Webb & Zhang (1997)
models came close to matching the performance of this study’s base model, despite not being
based on stream evaporation measurements.

Based on the cross-validation results, the models developed in this study can provide
estimates of evaporation with a typical error of less than 0.02 mm h−1 or, in energy flux
units, about 14 W m−2. The cross-validation results indicate that the models can be applied
with reasonable confidence to model water temperature for small- to medium-size streams in
temperate forested landscapes. However, the model developed by Benner (2000) overestimated
evaporation for our field sites, which suggests that the models developed in this study would
underestimate evaporation at the field sites studied by Benner (2000), which were located in
a warmer, drier environment. It is recommended that future research on stream evaporation
apply a consistent methodology to streams representing a broad range of thermal regimes,
physiography, and hydroclimate.

A challenge in applying wind functions for computing the sensible and latent heat fluxes
for streams is generating suitable meteorological data. Above-stream conditions differ from
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those over land, typically being cooler and moister during daytime in summer and less
windy for sheltered sites (Benyahya et al., 2010; Guenther et al., 2012; Leach & Moore,
2010). Consequently, if wind functions derived using above-stream meteorological data were
applied using land-based meteorological measurements, the simulated sensible and latent
heat fluxes would be biased. On the other hand, if wind functions are fit using land-based
meteorological data (e.g., Fulford & Sturm, 1984; Gulliver & Stefan, 1986; Jobson, 1980), then
the fitted coefficients implicitly incorporate the effects of sheltering and internal boundary
layer development over the surface of the study stream, which could limit the applicability of
the wind function to other sites.

In most applications of stream temperature models, meteorological data are measured at
land-based stations. There have been attempts to develop empirical approaches for using
land-based meteorological data to predict evaporation as a function of fetch or surface
area (Granger & Hedstrom, 2011; McJannet et al., 2012). While these approaches may be
reasonable for lakes and ponds, they may be less applicable for streams, given their distinctive
linear geometry and the influences of stream banks and riparian vegetation on boundary-layer
development.

Future research should focus on developing approaches to adjust such land-based measure-
ments to make them consistent with above-stream conditions to reduce bias. As a starting
point, it may be useful to scale temperature and vapour pressure as (xa − xw)/(xl − xw),
where x represents one of air temperature or vapour pressure, and the subscripts a, w, and
l indicate conditions above the stream, at the water surface and at a land-based weather
station, respectively. For wind speed, an appropriate scaling could be ua/ul. These scaled
variables could then be related to variables such as stream width and vegetation height.
Considering the current paucity of above-stream meteorological data, there is a need for
further field work to collect relevant data over a range of streams to support the development
of empirical scaling relations. This field work should be supported by theoretical work that
expands upon earlier lake- and pond-focused studies by Weisman & Brutsaert (1973) and
Hipsey & Sivapalan (2003), but which explicitly accounts for distinctive features of streams.

Conclusion

Evaporation rates were measured using floating evaporation pans at nine streams with a range
of widths (3.1 to 27.6 m), temperature regimes, and degrees of sheltering. The evaporation
rates ranged from -0.01 to 0.20 mm h−1, with a mean rate of 0.06 mm h−1. Generalized wind
functions were derived using these measurements and meteorological conditions measured 1.5
and 0.5 m above the stream surface, and had respective root-mean-square errors of 0.0187

19

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



and 0.0162 mm h−1 under cross-validation, and respective Nash-Sutcliffe efficiencies of 0.862
and 0.897. The cross-validation results support the application of the fitted models for small-
to medium-size streams in temperate forested regions.

Canopy openness and a stability index, the buoyant force, were incorporated as additional
model predictors. The addition of a stability predictor alone did not improve model predictions.
The wind function had consistent performance under cross-validation, and the addition of
canopy openness and stability predictors reduced site-specific variability in evaporation
predictions. The reductions in prediction error achieved with these additional variables were
greater for measurements at 1.5 m rather than 0.5 m. The wind function models presented by
Brady et al. (1969) and Webb & Zhang (1997) performed similarly to models fit specifically
to our data set.

Future research should investigate stream evaporation using a consistent methodology
across a broader range of conditions (stream temperatures, widths, degrees of sheltering, and
stability conditions), as well as examining the nature of wind, temperature, and humidity
profiles above streams. This would advance our understanding of stream evaporation in
complex micrometeorological environments and the variability in wind function coefficients,
and would aid the development of more robust, generalized wind functions applicable to a
broader range of streams. In addition, further research should focus on the effect of aeration
on sensible and latent heat exchanges.

Data availability statement

The data that support the findings of this study are openly available in Zenodo at
http://doi.org/10.5281/zenodo.3592942.
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Table 1: The base wind function (Model 0) and 11 expanded model forms incorporating
canopy openness and stability variables. The models were fit to meteorological measurements
made 0.5 and 1.5 m above the stream surface.

# Model
0 E = (a+ b · u) · ∆e
1 E = (a+ b · u+ c · φ) · ∆e
2 E = (a+ b · u+ c · γ) · ∆e
3 E = (a+ b · u+ c · φ · u) · ∆e
4 E = (a+ b · u+ c · γ · u) · ∆e
5 E = (a+ b · u+ c · φ+ d · γ) · ∆e
6 E = (a+ b · u+ c · φ · u+ d · γ) · ∆e
7 E = (a+ b · u+ c · φ+ d · γ · u) · ∆e
8 E = (a+ b · u+ c · φ · u+ d · γ · u) · ∆e
9 E = (a+ b · φ · u) · ∆e
10 E = (a+ b · φ · u+ c · γ) · ∆e
11 E = (a+ b · φ · u+ c · γ · u) · ∆e
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Table 2: Stream physiography, average wind speeds, and differences in wind speed. The
sheltering ratio is computed as tree height ÷ stream width, and uh refers to wind speed in m
s−1 measured h metres above the stream surface. The streams are arranged by decreasing
values of wind speed difference.

Stream Canopy
Open-
ness

Sheltering
Ratio

u1.5 u0.5 ∆u

Blaney Ck. (Lower) 0.09 8.41 0.61 0.39 0.22
Blaney Ck. (Upper) 0.24 4.21 0.30 0.16 0.14
Spring Ck. 0.16 10.55 0.38 0.26 0.12
Rutherford Ck. 0.70 0.29 1.63 1.53 0.10
Marion Ck. 0.11 7.88 0.45 0.38 0.07
Miller Ck. 0.57 0.97 0.48 0.42 0.05
Alouette R. 0.45 1.83 1.27 1.25 0.02
Cayoosh Ck. 0.50 0.86 1.19 1.17 0.02
North Alouette R. 0.15 4.19 0.17 0.18 -0.01
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Table 3: A comparison of wind function coefficients, a and b, derived from stream evaporation
measurements, and two commonly cited in stream temperature modelling studies. In the seventh
column, Tp indicates the evaporation pan water temperature. The units of a and b are mm h−1

kPa−1 and mm h−1 s m−1 kPa−1, respectively.

Source Site Wind Function Measurement Stream Tp

Description (a + b · u) height (m) width (m) measured?

This study Forested
streams

0.0663 + 0.0449·u 1.5 3.1 to 27.6 yes(ew,pan) 0.0815 + 0.0437·u 0.5

This study Forested
streams

0.0699 + 0.0549·u 1.5 3.1 to 27.6 yes(ew,stream) 0.0699 + 0.0661·u 0.5
Benner
(2000)

Streams in mead-
ows and forest

0.144 + 0.085·u 0.5 2.7 to 19.5 yes

Guenther et
al. (2012)

Forested stream 0.0424·u 1.5 1.5 yes

Maheu et al.
(2014)

Forested stream 0.11 + 0.122·u 2 8 no
Forested stream 0.123 + 0.035·u 2 80 no
Forested stream 0.047n + 0.074n · u 2 80 no

Caissie et al.
(2016)

Forested stream 0.19·u 2 1.7 no

Brady et al.
(1969)

Powerplant cool-
ing lake

0.101 + 0.005∗·u2 7 - -

Webb and
Zhang
(1997)

Streams in pas-
ture and wood-
land

0.055 + 0.059·u 2 - -

n wind function coefficients derived from night-time measurements
∗ coefficient units of mm h−1 s2 m−2 kPa−1A

cc
ep

te
d 

A
rti

cl
e

This article is protected by copyright. All rights reserved.



Table 4: Goodness-of-fit statistics computed from leave-one-out cross-validated model pre-
dictions for a selection of models. The root-mean-square error (RMSE, mm h−1) and the
Nash-Sutcliffe efficiency (NSE) are the model goodness-of-fit statistics provided.

# Model RMSE NSE

1.5 m 0 E = (a+ b · u) · ∆e 0.0187 0.862
11 E = (a+ b · φ · u+ c · γ · u) · ∆e 0.0166 0.891

0.5 m 0 E = (a+ b · u) · ∆e 0.0162 0.897
9 E = (a+ b · φ · u) · ∆e 0.0159 0.900
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Table 5: The population-level estimated coefficients and coefficient standard errors for the
selected models.

Estimated coefficient value [standard error]
# a (mm h−1 kPa−1) b (mm h−1 s m−1 kPa−1) c (mm h−1 s3 m−2 kPa−1)

1.5 m 0 0.0663 [0.0079] 0.0449 [0.0069] -
11 0.0837 [0.0033] 0.1201 [0.0169] 0.0766 [0.0234]

0.5 m 0 0.0815 [0.0049] 0.0437 [0.0072] -
9 0.0944 [0.0034] 0.0684 [0.0069] -
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Figure 1: Photographs of the nine study sites. 

199x218mm (300 x 300 DPI) A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



For Peer Review

 

Figure 2: The locations of the study streams, indicated by red dots, in southwest British Columbia. The 
climate stations providing data of the regional hydroclimate are indicated by white dots and labelled with 

their Environment and Climate Chanage Canada climate station ID. Figure 1 provides the stream names that 
correspond to the stream numbers. The inland streams are numbered 4, 6, and 8, and the remaining 

streams are the coastal streams. The base map source is the Stamen Terrain tile set © OpenStreetMap 
contributors. 
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Figure 3: The evaporation pans and meteorological station set up at Spring Creek. The TidbiT water 
temperature logger is submersed near the meteorological station. This demonstrates the ideal distribution of 

evaporation pans in a stream and the location of the meteorological station with respect to the pans; 
individual stream characteristics resulted in deviations from this ideal. 

103x138mm (600 x 600 DPI) 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



 

Figure 4: The stream-averaged distributions of water temperature difference between the evaporation pans 
and the stream. 
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Figure 5: The distributions of meteorological conditions at each stream during stream evaporation 
measurements, arranged by increasing mean stream temperature. 
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Figure 6: The distributions of meteorological conditions measured 0.5 and 1.5 m above the stream surface, 
arranged by increasing mean stream temperature. 
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Figure 7: Comparison of the evaporation rates estimated by applying seven literature wind functions to this 
study’s dataset. The wind function coefficients and the study references are provided in Table 3. The two 
panels for Maheu correspond to the wind functions for Catamaran Brook (CB) and the Little Southwest 

Miramichi River (LSWM). The panels are ordered from 1 to 7 by decreasing model root-mean-square error, 
and the Nash-Sutcliffe efficiency is provided in the top-left corner of each panel. 
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Figure 8: Cross-validated model predictions for the base mass transfer model and the two best expanded 
models, Models 9 and 11, for meteorological measurements made 0.5 m and 1.5 m above the stream 

surface, respectively. 
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Figure 9: The site-specific residual error distribution for the base and expanded 0.5-m and 
1.5-m models. The residuals were computed from cross-validated model predictions. 
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